MATHEMATICS

Mob.: 9470844028 9546359990

Ram Rajya More, Siwan

XIth, XIIth, TARGET IIT-JEE (MAIN + ADVANCE) & COMPETITIVE EXAM. FOR XII (PQRS)

VECTOR OR CROSS PRODUCT

& Their Properties

, , , , , , , , , , , , , , , , , , ,	CONTENTS
Key Concept-I	***************************************
Exercise-I	
Exercise-II	
Exercise-III	***************************************
	Solutions of Exercise
Page	***************************************

By: Dir. Firoz Ahmad

THINGS TO REMEMBER

- If $\vec{a} \cdot \vec{b}$ are two vectors inclined at an angle θ , then $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta \hat{n}$, where \hat{n} is a unit vector 1. perpendicular to the plane of \vec{a} and \vec{b} such that \vec{a} , \vec{b} , \hat{n} form a right handed system.
- 2. $\vec{a} \times \vec{b} = \vec{0}$ iff \vec{a} and \vec{b} are parallel.
- $\vec{a} \times \vec{b}$ = Vector area of the paralleogram having two adjacent sides as \vec{a} and \vec{b} . 3.
- Unit vectors perpendicular to the plane of \vec{a} and \vec{b} are $\pm \frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}$ 4.
- 5. $\vec{a} \times \vec{h} = -(\vec{h} \times \vec{a})$
- (i) $m(\vec{a} \times \vec{b}) m \vec{a} \times \vec{b} = \vec{a} \times m \vec{b}$, for any scalar m 6.
 - (ii) $m\vec{a} \times n\vec{b} = mn (\vec{a} \times \vec{b}) = mn\vec{a} \times \vec{b} = \vec{a} \times mn\vec{b}$ for scalars m, n.
- $\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_2 \end{vmatrix}, \text{ where } \vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k} \text{ and } \vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$
- For any two vectors \vec{a} and \vec{b} , we have $|\vec{a} \times \vec{b}|^2 + (\vec{a} \cdot \vec{b})^2 = |\vec{a}|^2 |\vec{b}|^2$ 8.
- For any vector \vec{a} , we have $|\vec{a} \times \hat{i}|^2 + |\vec{a} \times \hat{j}|^2 + |\vec{a} \times \hat{k}|^2 = 2 |\vec{a}|^2$ 9.
- Area of $\triangle ABC = \frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}| = \frac{1}{2} |\overrightarrow{BC} \times \overrightarrow{BA}| = \frac{1}{2} |\overrightarrow{CB} \times \overrightarrow{CA}|$ 10.
 - (ii) Area of a plane convex quadrilateral ABCD = $\frac{1}{2} |\overrightarrow{AC} \times \overrightarrow{BD}|$, where AC and BD are diagonal.
- If \vec{a} , \vec{b} , \vec{c} are the position vectors of the vertices A, B, C of \triangle ABC, then

Area of
$$\triangle ABC = \frac{1}{2} |\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}|$$

Length of the perpendicular from C on AB =
$$\frac{|\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}|}{|\vec{a} - \vec{b}|}$$

Length of the perpendicular from A on BC =
$$\frac{|\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}|}{|\vec{b} - \vec{c}|}$$

Length of the perpendicular from B on AC =
$$\frac{|\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}|}{|\vec{c} - \vec{a}|}$$

EXERCISE-1

- 1. Vector product is not commutative i.e. if \vec{a} and \vec{b} are any two vectors, then, $\vec{a} \times \vec{b} = -(\vec{b} \times \vec{a})$.
- 2. If \vec{a} , \vec{b} are two vectors and m is a scalar, then $m \vec{a} \times \vec{b} = m(\vec{a} \times \vec{b}) = \vec{a} \times m \vec{b}$
- 3. Distributivity of vector product over vector addition. Let \vec{a} , \vec{b} , \vec{c} be any three vectors. Then,
 - (i) $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$
 - (ii) $(\vec{b} + \vec{c}) \times \vec{a} = \vec{b} \times \vec{a} + \vec{c} \times \vec{a}$
- 4. Find $\vec{a} \times \vec{b}$, if $\vec{a} = 2\hat{i} + \hat{k}$ and $\vec{b} = \hat{i} + \hat{j} + \hat{k}$.
- 5. Find the magnitude of \vec{a} given by $\vec{a} = (\hat{i} + 3\hat{j} 2\hat{k}) \times (-\hat{i} + 3\hat{k})$
- 6. Find a unit vector perpendicular to both the vectors $\hat{\mathbf{i}} 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$ and $\hat{\mathbf{i}} + 2\hat{\mathbf{j}} \hat{\mathbf{k}}$.
- 7. Find a unit vector perpendicular to each of the vectors $\vec{a} + \vec{b}$ and $\vec{a} \vec{b}$, where $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = \hat{i} + 2\hat{j} + 3\hat{k}$.
- 8. Find a vector of magnitude 9, which is perpendicular to both the vectors $4\hat{i} \hat{j} + 3\hat{k}$ and $-2\hat{i} + \hat{j} 2\hat{k}$.
- 9. Find a unit vector perpendicular to the plane ABC where, A,B,C are the points (3, -1, 2), (1, -1, -3), (4, -3, 1) respectively.
- 10. Find the area of the parallelogram determined by the vectors $\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$ and $3\hat{\mathbf{i}} 2\hat{\mathbf{j}} + \hat{\mathbf{k}}$.
- 11. Show that the area of a parallelogram having diagonals $3\hat{i} + \hat{j} 2\hat{k}$ and $\hat{i} 3\hat{j} + 4\hat{k}$ is $5\sqrt{3}$.
- 12. Given $|\vec{a}| = 10$, $|\vec{b}| = 2$ and $\vec{a} \cdot \vec{b} = 12$, find $|\vec{a} \times \vec{b}|$.
- 13. Find the area of the triangle whose vertices are A(3, -1, 2), B(1, -1, -3) and C(4, -1, 1).
- 14. Show that $(\vec{a} \times \vec{b})^2 = \begin{vmatrix} \vec{a}.\vec{a} \ \vec{a}.\vec{b} \\ \vec{a}.\vec{b} \ \vec{b}.\vec{b} \end{vmatrix}$
- 15. If \vec{a} , \vec{b} , \vec{c} are the position vectors of the vertices A, B, C of a triangle ABC, show that the area of triangle ABC is $\frac{1}{2} |\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}|$.
- 16. Prove that the points A, B and C with position vectors \vec{a} , \vec{b} and \vec{c} respectively are collinear if and only if $|\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}| = \vec{0}$.
- 17. Show that distance of the point \vec{c} from the line joining \vec{a} and \vec{b} is

$$\frac{|\vec{b} \times \vec{c} + \vec{c} \times \vec{a} + \vec{a} \times \vec{b}|}{|\vec{b} - \vec{a}|}$$

By: Dir. Firoz Ahmad

- 18. For any three vectors \vec{a} , \vec{b} , \vec{c} . Show that $\vec{a} \times (\vec{b} + \vec{c}) + \vec{b} \times (\vec{c} + \vec{a}) + \vec{c} \times (\vec{a} + \vec{b}) = \vec{0}$.
- 19. If $\vec{a} \times \vec{b} = \vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c} = \vec{b} \times \vec{d}$, show that $\vec{a} \vec{d}$ is parallel to $\vec{b} \vec{c}$, where $\vec{a} \neq \vec{d}$ and $\vec{b} \neq \vec{c}$.
- 20. Let \vec{a} , \vec{b} , \vec{c} be unit vectors such that \vec{a} . $\vec{b} = \vec{a}$. $\vec{c} = 0$ and the angle between \vec{b} and \vec{c} is $\frac{\pi}{6}$, prove that $\vec{a} = \pm 2$ ($\vec{b} \times \vec{c}$).
- 21. If \vec{a} , \vec{b} , \vec{c} are three vectors such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, then prove that $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$.
- 22. Prove that the normal to the plane containing three points whose position vectors are \vec{a} , \vec{b} , \vec{c} lies in the direction $\vec{b} \times \vec{c} + \vec{c} \times \vec{a} + \vec{a} \times \vec{b}$.
- 23. If $\vec{a}, \vec{b}, \vec{c}$ are vectors such that $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}, \vec{a} \times \vec{b} = \vec{a} \times \vec{c}, \vec{a} \neq \vec{0}$, then show that $\vec{b} = \vec{c}$.
- 24. Prove that $(\vec{a} \vec{b}) \times (\vec{a} + \vec{b}) = 2(\vec{a} \times \vec{b})$ and interpret it geometrically.
- 25. For any vector \vec{a} , prove that $|\vec{a} \times \hat{i}|^2 + |\vec{a} \times \hat{j}|^2 + |\vec{a} \times \hat{k}|^2 = 2|\vec{a}|^2$.
- 26. Let $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = 10\overrightarrow{a} + 2\overrightarrow{b}$, and $\overrightarrow{OC} = \overrightarrow{b}$ where O is origin. Let promote the area of the quadrilateral OABC and q denote the area of the paralleogram with OA and OC as adjacent sides. Prove that p = 6q.
- 27. Let $\vec{a} = \hat{i} \hat{j}$, $\vec{b} = \hat{j} \hat{k}$ and $\vec{c} = 7\hat{j} \hat{k}$. Find a vector \vec{d} which is perpendicular to both \vec{a} and \vec{b} , and $\vec{c} \cdot \vec{d} = 1$.
- 28. Find λ and μ if $(2\hat{i} + 6\hat{j} + 27\hat{k}) \times (\hat{i} + \lambda\hat{j} + \mu\hat{k}) = \vec{0}$.
- 29. For any two vectors \vec{a} and \vec{b} , show that :

$$(1+|\vec{a}|^2)(1+|\vec{b}|^2)=|(1-\vec{a}.\vec{b})|^2+|\vec{a}+\vec{b}+(\vec{a}\times\vec{b})|^2$$

- 30. ABCD is a quadrilateral such that $\overrightarrow{AB} = \overrightarrow{b}$, $\overrightarrow{AD} = \overrightarrow{d}$, $\overrightarrow{AC} = m\overrightarrow{b} + p\overrightarrow{d}$. Show that the area of the quadrilateral ABCD is $\frac{1}{2}|m+p||\overrightarrow{b}\times\overrightarrow{d}|$
- 31. If A,B,C,D be any four points in space, prove that $|\overrightarrow{AB} \times \overrightarrow{CD} + \overrightarrow{BC} \times \overrightarrow{AD} + \overrightarrow{CA} \times \overrightarrow{BD}| = 4$ (Area of trianble ABC).
- 32. If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{c} = \hat{j} \hat{k}$ are given vectors, then find a vector \vec{b} satisfying the equations $\vec{a} \times \vec{b} = \vec{c}$ and $\vec{a} \cdot \vec{b} = 3$.
- 33. If $\vec{a} = \hat{i} + 3\hat{j} 2\hat{k}$ and $\vec{b} = -\hat{i} + 3\hat{k}$, find $|\vec{a} \times \vec{b}|$
- 34. (i) If $\vec{a} = 3\hat{i} + 4\hat{j}$ and $\vec{b} = \hat{i} + \hat{j} + \hat{k}$, find the value of $|\vec{a} \times \vec{b}|$.
 - (ii) If $\vec{a} = 2\hat{i} + \hat{k}$ and $\vec{b} = \hat{i} + \hat{j} + \hat{k}$, find the value of $\vec{a} \times \vec{b}$.

- 35. (i) Find a unit vector perpendicular to both the vectors $4\hat{i} \hat{j} + 3\hat{k}$ and $-2\hat{i} + \hat{j} 2\hat{k}$
 - (ii) Find a unit vector perpendicular to the plane containing the vectors $\vec{a} = 2\hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} + \hat{k}$
- 36. Find the magnitude of $\vec{a} = (3\hat{i} + 4\hat{j}) \times (\hat{i} + \hat{j} \hat{k})$
- 37. If $\vec{a} = 4\hat{i} + 3\hat{j} + \hat{k}$ and $\vec{b} = \hat{i} 2\hat{k}$, then find $|2 \vec{b} \times \vec{a}|$.
- 38. If $\vec{a} = 3\hat{i} \hat{j} 2\hat{k}$ and $\vec{b} = 2\hat{i} + 3\hat{j} + \hat{k}$, find $(\vec{a} + 2\vec{b}) \times (\vec{a} 2\vec{b})$.
- 39. Find the area of the parallelogram determined by the vectors:
 - (i) $2\hat{i}$ and $3\hat{j}$
 - (ii) $2\hat{i} + \hat{j} + 3\hat{k}$ and $\hat{i} \hat{j}$
 - (iii) $3\hat{i} + \hat{j} 2\hat{k}$ and $\hat{i} 3\hat{j} + 4\hat{k}$
 - (iv) $\hat{i} 3\hat{j} + \hat{k}$ and $\hat{i} + \hat{j} + \hat{k}$.
- 40. If $|\vec{a}| = 2$, $|\vec{b}| = 7$ and $\vec{a} \times \vec{b} = 3\hat{i} + 2\hat{j} + 6\hat{k}$, find the angle between \vec{a} and \vec{b} .
- 41. If $|\vec{a}| = \sqrt{26}$, $|\vec{b}| = 7$ and $|\vec{a} \times \vec{b}| = 35 \vec{a} \cdot \vec{b}$.
- 42. Let $\vec{a} = \hat{i} + 4\hat{j} + 2\hat{k}$, $\vec{b} = 3\hat{i} 2\hat{j} + 7\hat{k}$ and $\vec{c} = 2\hat{i} \hat{j} + 4\hat{k}$. Find a vector \vec{d} which is perpendicular to both \vec{a} and \vec{b} and $\vec{c} \cdot \vec{d} = 15$.
- 43. Using vectors find the area of the triangle with vertices, A(2, 3, 5), B (3, 5, 8) and C(2, 7, 8).
- 44. Let $\vec{a} = \hat{i} + 4\hat{j} + 2\hat{k}$, $\vec{b} = 3\hat{i} 2\hat{j} + 7\hat{k}$ and $\vec{c} = 2\hat{i} \hat{j} + 4\hat{k}$. Find a vector \vec{d} which is perpendicular to both \vec{a} and \vec{b} and $\vec{c} \cdot \vec{d} = 15$.
- 45. Given that $\vec{a} \cdot \vec{b} = 0$ and $\vec{a} \times \vec{b} = \vec{0}$. What can you conclude about the vectors \vec{a} and \vec{b} ?
- 46. If either $\vec{a} = \vec{0}$ or $\vec{b} = \vec{0}$. Is the converse true? Justify your answer with an example.
- 47. If $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$, $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$, $\vec{c} = c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k}$, then verify that $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$.

EXERCISE-2

- 1. For any two vectors \vec{a} and \vec{b} write the value of $(\vec{a} \cdot \vec{b})^2 + |\vec{a} \times \vec{b}|^2$ in terms of their magnitudes.
- 2. If \vec{a} and \vec{b} are two vectors of magnitudes 3 and $\frac{\sqrt{2}}{3}$ respectively such that $\vec{a} \times \vec{b}$ is a unit vector. Write the angle between \vec{a} and \vec{b} .

By: Dir. Firoz Ahmad

- If $|\vec{a}| = 10$, $|\vec{b}| = 2$ and $|\vec{a} \times \vec{b}| = 16$, find $\vec{a} \cdot \vec{b}$. 3.
- For any three vectors $\vec{a} \times (\vec{b} + \vec{c}) + \vec{b} \times (\vec{c} + \vec{a}) + \vec{c} (\vec{a} + \vec{b})$. 4.
- Write the value of $\hat{i} \times (\hat{i} \times \hat{k})$. 5.
- If $\vec{a} = 3\hat{i} \hat{j} + 2\hat{k}$ and $\vec{b} = 2\hat{i} + \hat{j} \hat{k}$, then find $(\vec{a} \times \vec{b})\vec{a}$. 6.
- Write a unit vector perpendicular to $\hat{\mathbf{j}} + \hat{\mathbf{j}}$ and $\hat{\mathbf{j}} + \hat{\mathbf{k}}$. 7.
- If $\vec{r} = x \hat{i} + y \hat{j} + z \hat{k}$, then write the value of $|\vec{r} \times \hat{i}|^2$. 8.
- If \vec{a} and \vec{b} are unit vectors such that $\vec{a} \times \vec{b}$ is also a unit vector, find the angle between \vec{a} and \vec{b} . 9.
- If \vec{a} and \vec{b} are two vectors such that $|\vec{a} \cdot \vec{b}| = |\vec{a} \times \vec{b}|$, write the angle between \vec{a} and \vec{b} . 10.
- If \vec{a} and \vec{b} are unit vectors, then write the value of $|\vec{a} \times \vec{b}|^2 + (\vec{a} \cdot \vec{b})^2$. 11.
- Find the angle between two vectors \vec{a} and \vec{b} with magnitudes 1 and 2 respectively and when 12. $|\vec{a} \times \vec{b}| = \sqrt{3}$.
- Vectors \vec{a} and \vec{b} such that $|\vec{a}| = \sqrt{3}$, $|\vec{b}| = \frac{2}{3}$ and $(\vec{a} \times \vec{b})$ is a unit vector. Write the angle between \vec{a} and \vec{b} .
- Find λ , if $(2\hat{i} + 6\hat{i} + 14\hat{k}) \times (\hat{i} \lambda\hat{i} + 7\hat{k}) = \vec{a}$.

EXERCISE-3

- If \vec{a} is any vector, then $(\vec{a} \times \hat{i})^2 + (\vec{a} \times \hat{j})^2 + (\vec{a} \times \hat{k})^2 =$ 1.
 - (a) \vec{a}^2

- (c) $3\vec{a}^2$
- $4(d) \vec{a}^2$
- The vector $\vec{b} = 3\hat{i} + 4\hat{k}$ is to be writen as the sum of a vector $\vec{\alpha}$ parallel to $\vec{a} = \hat{i} + \hat{j}$ and a vector $\vec{\beta}$ 2. perpendicular to \vec{a} . Then $\vec{\alpha}$ =
 - (a) $\frac{3}{2}(\hat{i}+\hat{j})$
- (b) $\frac{2}{3}(\hat{i}+\hat{j})$ (c) $\frac{1}{2}(\hat{i}+\hat{j})$
- (d) $\frac{1}{3}(\hat{\mathbf{i}} + \hat{\mathbf{j}})$

- The value of $\hat{i} \cdot (\hat{j} \times \hat{k}) + \hat{j} \cdot (\hat{i} \times \hat{k}) + \hat{k} \cdot (\hat{i} \times \hat{j})$, is 3.
 - (a) 0

(b) -1

(c) 1

- (d) 3
- If θ is the angle between any two vectors \vec{a} and \vec{b} , then $|\vec{a} \cdot \vec{b}| = |\vec{a} \times \vec{b}|$ when θ is equal to 4.
 - (a) 0

(b) $\pi/4$

(c) $\pi/2$

(d) π